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VORTICITY GENERATION BY ASYMMETRIC ENERGY
DEPOSITION IN A GASEOUS MEDIUM

1. INTRODUCTION

Recent experiments by Greig et al.!~ have studied hut channels produced by lasers and electric
discharges in ambient air. Following expansion to pressure equilibrium, the hot channels cool with a
rate which 1s several orders of magnitude faster than that attributable to classical thermal conduction.
Since any reasonable estimate of background gas velocities falls far short of explaining the cooling rate.
we require a mechanism to convert curl-free fluid expansion. which does not mix, into persistent vorti-
city., which can. The importance of determining the mechanisms and scaling laws governing the
dvnamics and cooling of such hot channe!s derives ficm the application of discharge physics to other
areas, such as beam physics and the study of ritrogen fixatica in the atmosphere by lightning.® In the
latter case. the cooling rate of the hot channel gas is critical to predicting the global production of nitro-

gen oxides.

In Section II of this paper we propcse a mechanism for the generation of persistent flows which
mix cold. ambient gas into the hot gaseous channels produced by one or more pulses of energy. The
mech..nism relies on deviations from c¢ylindrical symmetry in energy deposition by a given pulse. and
we idertify three classes of asymmetry which appear to be physically significant. Section II also intro-
duces a convenient representation of the vorticity distribution in terms of one or more vortex filament
pairs. We use this representation in Section III to derive a formula for the mixing time scale © ..
which characterizes the rate at which cool ambient air is entrained into the hot channel. To estimate
Tmix W€ use dimensional analysis to derive an approximate formula for the expansion induced vorticity.
Our estimate shows that the proposed mechanism causes mixing of cool background gas with the heated
channel interior on time scales which are orders of magnitude shorter than those characterizing molecu-
lar thermal conduction. Section IV provides a detailed theoretical analysis of the three classes of asym-
metry. The resulting formulae for the vorticity strength are considerably more accurate than that of
Section II. Section V presents the results of detailed two-dimensional simulations of several sample
cases. These computations validate the qualitative features predicted by the analytic model and permit
us to calibrate the analytic formulae accompanying the model. We have used our results to analvze
experimental data on the cooling of electric discharge channels.® Our comparisons have indicated good

agreement between predicted and observed mixing times.
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II. MECHANISMS FOR CONVECTIVE COOLING

The symmetric expansion of a cylindrical channel, produced by a pulse of energy causes no con-
vective mixing per se. but asymmetries in energy deposition which are inherent in the pulse structure
or which occur relative to the local density distribution generate long-lived vortex tlaments. The
sheared flow attending the motion and interaction of these filaments mixes vold background gas into
the heated channel at a rate which depends on the strength of the induced vorticity and thus ultimately
on the fluid-dvnamic asymmetries. We can identify three generic types of asymmetries: (1) two-
dimensional asymmetries from pulse displacement off the axis of an existing hot channel. (2) two-
dimensional distortions of the pulse envelope from a circular cross section. and (3) three-dimensional

distortions (e.g., curvature) of the envelope. such as characterize a lightring or spark channel.

As the channel of the most recent pulse expands to pressure equilibrium, any deviations from
cvlindrical symmetry will lead to asymmetries between the gradients of the pressure and density distri-
buiions. The equation which describes the resulting vorticity distribution 2ad evolution is

= +§V-v=§ Vv +(Vpx TP)p? (1)

-

where
§=Vxy 2)

is the vorticity, v is the fluid velocity, p is the density, and P is the pressure. All of the variables are
iunctions of the position r and the time . Following expansion of the channel to achieve pressure
equilibrium, significant residual vorticity exists. This vorticity is responsible for mixing ambient gas
with the hot channel gas. Here we should note that other mechanisms for generating residual vorticity
in the heated channel may exist. As the channel expands to pressure equilibrium, for example, the
Rayleigh-Taylor instability could grow significantly. The experime_ntal data do not support this possibil-
ity, however." Another possibility is the rapid movemeat of the discharge current axis which could
result from magnetic forces present when the current is nonnegligible. This could. in turn, displace the
surrounding air sufficiently to produce some long-term mixing motion. We do not attempl to estimate

the magnitude of such phenomena in this paper.

Figures 1-3 depict the classes of asymmetry schematically and will form the basis for our notation
and calculations, as discussed in subsequent sections. While all three types will often occur simuitane-
ously, we will treat them separately to isolate their r2spective characteristics, We have defined the :-
axis to be collinear with the channel axis (i.e.. outward from the page to the reader) for cases | and 2.

For our analysis of three-dimensional distortions. we have chosen a section of the channel with

(2]
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moderate sinusoidal curvature relative to the length. The z-axis is collinear with the center of the mass
of the section. The displacement X, represents the degree »f asymmetry which is present in a given

situation.

Figure 1 shows how we model the first asymmetry class, which is relevant to sequences of approx-
imately collinear pulses and to pulses with interior "hot spots."” Our model assumes a preformed, hot,

low density channel in which the next pulse is propagating off center. In Fig. 2 we presen* the cross

section of the pulse as elliptical where the ellipticity is defined by the parameter X,. Residual vorticity
will be present whenever X, is nonzero. Such a distortion of a pulse may occur in several ways: (1)
the envelope of the pulse undergoes smooth spatial oscillations; (2) the pulse is deposited in a region
with an azimuthally nonuniform local density distribution: or (3) the source of the pulse produces an
azimuthally nonuniform (though smooth) distribution of energy. Figure 3 shows a simple model of the
fast asymmetry class, which includes all pulses with a curved axis. Such curved discharges occur both
in laboratory discharges and in lightning.® We have found that all three types of asymmetry will pro-
duce a sizable nonzero value for £, which will cause mixing in the {r, 8) plane. In the case ot three-

dimensional distortions, &, will also be nonnegligibie; this resul:s in mixing in the (r, z) plane.
III. MIXING TIME SCALE

A. Vortex Filament Representation

We may represent the residual vorticity distribution in terms of one or more vortex fllament pairs

of strengtit + k,,, where the index i labels the asymmetry class and a denotes z or . The quantity x ,
is the integral of the vorticity over the domain containing a given filament. P’ »r example. in the case of
a pulse which is noncollinear with a preformed hot channel (asymmetry type 1) we have the (x, ) flow
pattern depicted in Fig. 4. These flows are equivalent to those of a single vortex filament pair having
strengths of +i . and respective locations (X, +¥). The strenéth K,. is given by the integral of the

vorticity over the upper half plane. i.e.,

R = [Ty [ dve oy o (3)
and the coordinates are
_ ‘ ) o0
X(r) = dx x €,(x, v, 7) (4)
3




f: adv f_: de y €.(x, y, 7). (5)

Vi(r) m —

Ki. (T)

The quantity r is the time interval over which vorticity generation is completed and is thus approxi-
mately the time required for the hot channel gas to expand to pressure equilibrium. Defining ¢+ = 0 to
be the time at which the discharge is initiated, we may integrate Eq. (1) over the interval (0. ) to

obtain the vorticity distribution ¢, (x. y, 7).

Figure Z shows that the elliptical channel will have two associated vortex filament pairs. Here the
domain of integration in Eqs. (3)-(5) will 'se the quarter plane and we will use cylindrical coordinates.
For the curved channel section in Fig. 3. we will again use cylindrical coordinates. The integral for &k,
will cover the upper hsif plane as in Egs. (3)-(5); however, unlike class one, k;. will vary along the
channel axis. To obtain k; we will integrate over half a wavelength in our simple model of a
sinusoidally curved channel. Because k3, will, in general, vary with 8, we may then perform an azimu-

thal integral (9¢[0, 7]) to obtain a total longitudinal mixing strength.

B. Derivation of Mixing Time Scale

In order to derive an equation for the time scale of the mixing of cool ambient gas with the hot
channel gas, we must first review the experimental observations.'”> Soon after the deposition of energy
(=300 — 600 J/m) by an electric discharge or laser puise, the hot channel expands, producing a shock
wave. Within 100 us, the shock has decoupled from the channel, which has reached pressure equili-
brium and ceased to expand. At that point, the channe! boundaries are smooth. However after another
100 us, the edges of the channel have become distorted. anc the channel has started to expand and
cool through entrainment of the surrounding air. By = | ms. small scale (turbulent) structure is evi-
dent and the channel has grown considerably. We attribute the initial disruption of the channel and the
entrainment of ambient air to the convective motion generated by the mechanism of Eq. (1). To deter-
mine the mixing time scale, therefore, we will treat this large scale structure separately from the smalier
scale motion observed as the channel cools. An understanding of the development of the latter flow
structure would, of course. be necessary for an accurate description of the dynamics of the fluid inside

the channel.

For simplicity we assume that the asymmetry induced flow field may be represented 2pproximately
as two compact vortex filaments of strength £x at =7, as in Fig. 4; thus we treat each vortex filament
pair separately. This is in fact the situation for £. in the case of off center beam propagation. The

azimuthal velocity induced by each filament decays as 1/r away from the vortex center. The velocity of

4




the fluid along the symmetry plane is the sum of flows induced by each vortex separately. Figure 4 is a

schematic of the situation with a sketch of the variation of the fluid flow velocity along the x-axis. This

velocity is given by

volx, 0) m —XF (6)
' wla? + _V")

The filaments are migrating in the same direction at a slower velocity,

vV, = —L:, (7)

’ 4y
which we will ignore in the following integral estimates. This overall migration velocity can be impor-
tant when a series of pulses is being considered. In that case a quasi-steady state develops in which the
systematic migration of the integrated vorticity entrains cold fluid stochastically at the edges of the hot

channel.

To estimate the mixing time, we use Eq. (6) to calculate the time required for a fluid element
starting at x = —S, to reach x = §,, ignoring the effects of small scale turbulence. The equation of

motion for this element is

ax KV
= =y (x0) = —— (8
ar m(x? + 7)) )
which can be integrated to give
[T rpem 2 [0 ac 2+ 7) (9)
N P = T =75 95 x (x yo).

The quadrature can be performed and gives the following mixing time estimate:

2r SO

——

S§ .
L
3 T

I (10a)

- -
4 mix

lkl¥
where the vortex strength k is given by Eq. (3) and the "average’ displacement of this vorticity above
the v = 0 plane is given formally by Eq. (5). Recently we have found that r, has a simpler and
perhaps more realistic interpretation. If we define V, to be the volume of the channel just after pres-
sure equilibrium, 7, is approximately the time interval required for a volume ¥, of cool ambient air
to mix with the hot channel gas. For an ideal gas, therefore. 7, is approximately the time in which

the channel volume doubles.®

We note in Fig. 2 that. for the case of the elliptical channel (asvmmetry class 2). two vortex

filament pairs are generated and the flow is inward along the semimajor axes, a,. and outward along the
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semiminor axes, b,. A representative v, {and volume doubling time) can then be taken as the sum
of the time intervais required for a fluid element to traverse half the ellipse along a, and b, respec-
tively. For these times and each vortex filament pair. the derivation of Eq. (10a) will carry over
directly. For the inward flow along the semimajor axis. a,. we integrate from 0 to a, for the fluid parti-
cle path rather than —S; to Sy. In Fig. 2, the vortex filament pair most influencing this motion is that
appearing on the right side of the minor axis. The displacement of these filaments is 2v = 2b,. This

gives us

(10b)

Similarly, for a fluid element traveling along the semiminor axis from y = 0 10 b,. ihe vortex filaments

most influencing the motion are the two in the upper half plane and are therefore displaced by

2x = 2a,: so we have

wbh,

Tox(d) —

b | 4z (10¢)
3 as|. c

"?2: lae
Our representative time scale would then be the sum of Egs. (10b) and (10¢),

Truxt2) ™ Tmuxta) - T muxth) (10d)

i The case of three-dimensional distortions is more complex than the others, since two components

(k. and k3,) of the residual vorticity are nonnegligible and are functions of = and 8, respectively. From
! Fig. 3. we see that for a given value of z, k;. is computed by assuming that the density distribution is
offset from the pressure distribution, as for asymmetry class 1. The equation for 7y, is therefore
identical to Eq. (10a) with k as a function of z. We will find that the dependence on :z leads to localiza-
tion of the vorticity at = = 0, A/2, and A. in contrast to the case of off center beam propagation. Simi-
larly we will find that lk;,| is largest when 8 = 0° or 180°, so that we can compute =y, as the time
for a fluid element to travel half a wavelength (for a sinusoidally curved channel) under the intluence
of vortex filaments of strength ik, (0% ] = [k, (180°)|. With a separation 2¥ = 2R,. where R, is the

radius of the channel cross section at pressure equilibrium we obtain

TA Al )
o O c——— __+R- . (1
mix(8) 2R |7 (0)] \ 5 \l Oe)




While Eqgs. (10a) and (10e) will give us an estimate of the mixing rate for asymmetry class three.
we can define a channel doubling time only by computing the flux of ambient air into the channel

under the influence of the total velocity field defined by the strengths k;,(z) and k4,(8).

C. Estimates of r;, from Dimensional Analysis

We may now use Eq. (10a) to estimate 7, for the first asvmmetry class. in which a pulse is not
collinear with a preformed hot channel. To do so. we require values for x and . The remainder of
this paper deals with the analvtic calculation and numerical calibration of expressions for k. We will
find a reasonable value for v from the numerical simulation of sample problems. A simple dimensional
analysis allows us to make at jeast crude estimates rather directly for the example of two successive.
noncollinear pulses. A number of size scales enter the problem: S,. the radius of the channel ¢r -
by the first pulse:. the characteristic scale lengths for the pressure and density gradients; and the al
and final radii R, and R, of the second, displaced channel being formed. Fortunately most of e
scales are either unimportant or expressible in terms of Sg. If the first and second pulse have s
initial overpressures, R, and S, will be roughly equal and R, will be a modest fraction of R,. _.r

numerical simulations (Section V) support the approximate equality of Sy and R .

We expect other simplifications. Whether a shock expansion or an adiabatic expansion is being
driven by energy deposition, the larger the pressure gradient the smaller the time over which it acts.
Thus the integrated vorticity is relatively insensitive 10 the shock thickness. Similarly, the density gra-
dient is integrated over space so the inner and outer densities {p, and p.} enter. but the scale length
of the transition region can be neglected. We expect and will in fact show that the maximum vorticity
generation occurs when Xy = §,. Thus there are no small parameters arising as ratios of characteristic
lengths unless we consider exceltionally tightly focused pulses. in which case Ry << R = §,. or only

slight departures from the symmetric superposition of the pulses, in which case X, << §,.

The integrated vorticity x has units of ¢cm*/sec. a length times a velocity or a characteristic time
multiplied by a velocity squared. The characteristic velocity will be the expansion velocity. When the
energy deposition is fast and the pulses are strong, this velocity is a charactenstic sound speed ;. The
characteristic time is the expansion duration (if the energy deposition is slow} or the sonic transit ime

Sy/¢c,. Thus we expect

;] SL'SS()FL. (ll)

where F,. is a dimensionless form factor containing geometric effects. detailed hydrodynamic interac-

tions. and information about the channel and beam profiles. Cancellation effects. teaving v - V v as the




dominant contribution to the vorticity source team, generally reduce £,., somewhat below unity. We

will demonstrate this in Section IV,

If we assume that v = 0.85,. Eq. (10) for the mixing time becomes
T = 198yt Foo. (12)

For a strong pulse which heats the gas appreciably on passage. we shall assume F,. = 0.5. Taking
5 x 10* cm/s as a generic value for ¢, and choosing Sy = I cm gives 74, = 300 us. This time scale is

at least three orders of magnitude shorter than that of classicial thermal conduction.’

If we consider only the large scale convective flows. this 300 us "mixing tme" from the dimen-
sional analysis estimate of Eq. (10a) is the time for cold material from one side of a hot channel to
cross the chaanel and reach the other side. Because of the presence of small scale turbulence and other
perturbations which can affect the interaction of the vortex filaments. the fluid particles will be likely o0
follow a more random path inside the channel. In addition. true mixing of hot and cold fluid will prob-
ably take somewhat longer because one or two rotations of the vortices will be required to entrain and
smear in an appreciable amount of the cooler fluid. This "mixing" time. however best defined. is clearly

important when comparable to or less than the time interval between pulses.

In the next section, we perform an integration of the vorticity source term in Eq. (1) to improve
on Egs. (11) and (12), our dimensional analysis estimates. Using a few reasonable assumptions. we
obtain a quadrature for the integrated vorticity ,,, which will display the various nondimensional

dependences of the form factor £, .

IV. APPROXIMATE VORTICITY INTEGRALS

Equation (3) defines the residual vortex strength following expansion to pressure equilibrium
(r > ) and will be evaluated analytically to replace Eq. {11} in the mixing time estimates. Egs. (10).
First. however, we must integrate Eq. (1) over the time interval (0.7). We begin by stating several

assumptions which will permit us to perform these integrals.

We model the deposition of energy as instantaneous and use pressure pulses of finite size with in
appropriate radial profile and a total energy which is equivalent to that of the laser pulses or electric
discharges. This is a reasonable assumption for the experiments of Greig et al..!" in which the
discharges were much shorter in duration than the expansion times of the hot channels. Qur model
deposits the energy as internal energy only, and we. therefore. do not consider relaxation of excited

molecular and atomic states. The presence of long-lived states will slow expansion of the channel:




howsaver. our analytic model becomes more accurate in this case. as discussed below. The variable
R t+r+ will denote the radius of an expanding cylinder of hot gas which is produced by the latest pulse.
Note tiat, according to Section I{II.B. R(0) = R, and R{r) = R,  To represent the flow field of the
expanding channel, we assume that the flow in the outside region (r < R {r)) behaves incompressibly

and th. nside. beam-heated region expands uniformly. Thus

rU )/ Rit) if r < R(1)
v, lr, 1) = (13)
Uty Ry r ifr>RI(

specifies the flow everywhere as a function of the heated region radius R (1) and velocity L (1) = R (1).
This flow has a uniform but time varving divergence inside the heated region and zero divergence out-
side. In raality the fluid inside the just-heated channel will give up energy to the cold surrounding fluid
via shocks. and a fraction of the pulse-deposited energy will even escape 1o infinity as an acoustic wave.
The smooth shape of the expanded channels observed from 1D hole-boring calculations” and the com-
putational and experimental’ result that most of the deposited energy stays close to the original pulse
deposition region support the approximations implied by using the flow field. Eq. (13). We note that

Eq. (13) becomes a better representation as the rate of energy deposition decreases.

As we will soon show more explicitly, the important feature of vorticity generation is the radial
distance which each fluid element moves. Pressure gradients arising from accelerations of a {luid ele-
ment do not really contribute to vorticily in the present context. Because the fluid elements begin and
end their expansion-induced displacement at rest. the average acceleration is zero. The~v : Yj vorticity
source term has the same sign throughout the expansion and consequently contributes more strongly to

the integrated vorticity.

Because our velocity field during expansion is radial and varies only with r. the coupling term
£ S';v in Eq. (1) is initially negligible. Further. the maximum vortex induced flow speed which resides
in the system is much smaller than the maximum expansion speed. This term, therefore remains small
relative to the other terms throughout the expansion and may be neglected. To evailuate the pressure

gradient in the source term we may use the flow field. Eq. (13). in the equation of motion to obtain

) r%(U/R) +rUYR?  ifr < R()
1 v,

-=V.P=—"=1, 4 . {14)
p dt — =R - URYr  ifr > RI(D)
r




Notice that we assume that the acceleration in the radial direction has values strictly appropriate
only when feedback of the asymmetric density gradients on the driving expansion flow are small. The
model appears to work quite well for large density variations as well, a result that is understandable in
hindsight. The maximum vortex-induced flow speed wh'~h resides in the system is much smaller than
the maximum expansion speed. Further. the vorticity is generated essentially instantaneously relative
to the mixing timescale . Thus the generation term can be calculated assuming that the asymmetric
density gradients do not change the expansion-driven pressure gradients and that the vorticity which

develops does not affect the density gradients during the relatively brief expansion.

Since the pressure gradients are assumed to be radial. the radial vorticity component will be negli-
gible and we need to evaluate only the azimuthal and axial gradients of the density. Our representation

of the density profile is
pis. 1) =p.expl=in(pa/po) & Is. Sg 1)) (13)

where g10, §), 0) = 1: gleo, §,, 0) = 0.5 is a displacement vector. and S, is a characteristic scale
length defined in Figs. 1-3. Normally g(s. S, o is a function of the ratio 5/S,. In the subsections
below. we will evaluate i, for the three general asymmetry classes. For brevity we will discuss the off

center beam propagation case in detail and shorten the presentation for the other two cases.

A. Off Center Beam Propagation

As indicated by Fig. 1. the case of off center beam propagation is two-dimensional. and the dom-
inant contribution is the passage of the shock across the preformed hot channel. which is assumed to be
cylindrical. Thus we may use the flow field at and outside of the boundary of the expanding chanrel
(r 2 R(t)). Because the problem is two-dimensional, v. p. and P do not vary with =, and for this rea-
son. only €, is nonzero. Noting that the flow field in the outer region is incompressible and using Egs.
(1), (14), and (15), we have for

=0 if r < R(1)
%’ Po| 980) | (UR)? _ 1 d ‘ (e)
t n Xy =2="jAav) 1 a H :
or 39 e 3 dI(LR) if r > R(D

Because we assume that the vorticity does not affect the density gradients during the relatively
brief expansion. g{s) does not vary with time in our model. and, therefore. describes the channel prior
to deposition of the latest pulse. Notice that we have suppressed S, as an argument of g(s). We will

take S, into account when evaluating form factors later in this section. We may now calculate k. by

10
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using Eq. (16} in Eq. (3). Since we are currently using Eulerian variables, we may reverse the order of

the time ana spatial integra:icns to obtain

_ .t " o ag(;s)
k7)) =In (p,,/po)‘j“ dlj:) de P drr 39

(UR)! _ 1 d(UR)
"4 I_:‘ d’ '

We now change to the Lagrangian variables (r,, 6,) where

r—rit) =~/r§ + R2) = R§
9-90.
This gives us

rdr=rydrg,

and r (1) is the instantaneous radial position of a fluid element initially at r(0) = ry.

the radial density variable s becomes

s= (X3 +r— 2Xgr;cos9)! 2

and the integral in Eq. (17) can be performed without approximation. This gives us

. ag g(r0+X0)—g(X0—r0), fog XO
fo 48 =9 = letro+ Xo) — glrg— Xo). 70> X,

and Eq. (17) becomes

%.(7) = In % N
- f e g(xo—r())[(ffﬁ;z - 4ULR)
2 - [RE - A

I

(17}

(18)

19

In terms of r,,

(20)

(21)

(22)




Notice that the expression in Eq. (22) is long because of the requirement that the radial variable s
be positive or zero. Equation (21) is necessary, for instance. when gls. So) is a square well

1. s< 8

g(‘;g, SO’- 0, s> S()' ‘23)

which is not defined for negative s. However, if g(s. S;) is an even function of s, such as a Gaussian,

then Eq. (21) represents an irrelevant distinction and Eq. (22) shortens considerably.

The integral in Eq. (22) is difficult to perform even if R (¢) for our particular case is known. and
further approximations must be made to get a usable analytic result. The approximation most useful is
to evaluate the integrand at a specific time. If we assume that the initial and final states of the expan-
sion are at rest. we have U'(0) = U(r) = 0. The expansion flux R (r)U(r) will then peak at a time
0< 1, < r. We will evaluate the integrand in terms of r,. If the function R (¢) U/ (1) is approximately

symmetric about t = r,,, a reasonable approximation for the term L2(;)R%(¢) in Eq. ¢22) would be half

the maximum value, i.e.,

UX)R¥M1) = UNi,)R (1), 2 = U2R2/2. (24)

We also replace r(r) by r, =~/r§ + R} — Rj. Because r, does not vary with time and because

. . (UR) . .
the system is at rest at + = 0 and 7 = r, the term proportional (o —djd—l—— integrates to zero. This

term. therefore, corresponds to a transient in the vorticity during the expansion to pressure equili-
brium. As the time approaches ¢ = 7, we expect the vorticity strength to approach a value which will
With the above simplifications. we may perform the time

,;’,g(ro - ro)

_frndrr Rag Xy~ 1) "fxd" A
Ry oo (r& +R”2'_R02)2 v e "02 +R’":—R”2)2

be approximately constant for r > 7.

integration of Eq. (22) to obtain

_ Uir
Ki. ()= —— In

: 2

Pos

Pao

© Riglry+ Xp) .
d d - (25)
le) G Y RI- R )

for the residual vorticity. We may approximate the expansion time r by
= 2R, - RyY/U, (26)

where, as before, Ry = R(0) and R, = R(r). In Eq. (26). we use L’,,/2 10 estimate the average velo-

city of expansion.
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Next we write the integral in terms of three ncndimensional parameters
a=R,R, <1
b= R,/ S £ 1, (27)
c=EXYS = L

Letting the integration variable be n = r/R,, yields

Ulr P = g'Sylnd + b
K. (1) = —=—— |n |— d _—
Ky, At 3 n o0 [J; nn (1 + - a:)z
(28)
_ fﬁ' b J g(S()[C - nb]) —f‘;" g(S()[nb - C])
a (l~1—~r)2-—az)2 b n(l+n:-az)2'

If the remaining composite integral is identified as a three parameter form factor f\.{a. & c¢) with
values of order unity, the very useful improvement on the dimensional approximation (Eq. (11)) is

obtained:
K. (7) = (U2r/2) In (po/py)fi.ta. b, ¢}
= U, (R~ Ry In (p/py)fi.la. b c). {29)

Here the form factor f. is generally less than 1/2. The sign of /| indicates the direction of flow in the

(x, v) plane—counterclockwise or clockwise.

We will now include the explicit dependence of the function g{s. Sy) upon Sy. usually this occurs
as the ratio s/S;. In this case. the muitiplicative Sy in Eq. (28) will cancel with that in the denomina-
tor. For this reason, the form factor /). in Eq. (29) depends only on the ratios a, b, and c. and not
explicitly on Sy, and we have

- _gbtc) ot _gle—mb)
fi:la b ¢) fa dnn Qrnieal)l fu dn n (1 + 7 — a)?

d (nd - ¢)
- LR T Al Ll L (30)
PR T R JEEY

The general integral form factor, Eq. (30), can be evaluated numerically for any reasonable profile

g(s/Sy). Figure 5 shows plots of f|. versus ¢, the measure of channel separation, for several values of

13




aat b = 0.7 and for several values of b at a = 0.6. These values are close to the actual initial condi-
tions for the detailed calculation of the next section. In this figure the super-Gaussian density profile

was used,
856 (5/Sy) = exp (—s¥S¢) (31)

and the integrations were performed using a numerical quadrature algorithm. We have also evaluated

1. for a Bennett profile,

P ™ Py

m / InlpL/py): (32)

£ (S/So) - —ln[l -

the results appear in Fig. 6. In Eq. (32), the "Bennett radius” is equal to Sy. In the case of a square

well density discontinuity at s = S, Eq. (23}, the integral can be performed analytically to give

2 2
b - b (33)

1
™ (g, b, )= — 3 T
Jiz fa.5oc 1+l +0l-a)  (U=ol+ bl -ad)

2

for ¢ > | + ab. This is the case when the second pulse is wholly outside the channel formed by the
first pulse. As ¢ approaches oo, f{% decreases as —1/c%; so pulse channels separated by more than 3

radii interact only weakly.

When the channels are closer. we have ¢ < | + gb . and the channels overlap somewhat. As
long as ¢ > l—ab there is still part of the second channel of initial radius R, outside the cylinder
s = S,. For this region of values, | — ab < ¢< 1 + ab, we have

b2

1
(g, b c)= — ~ ~1 (34)
N fa ¢ 211+ ¢)* + p¥1 = ad)

Equation (34) agrees with Eq. (33) at the interfacial separation ¢ = 1 + ab.

There is a third region where the initial radius of the second channel lies wholly within the first,
ie., ¢< 1 —ab. Then f3¢¥ (ab.) satisfies Eq. (33) again. In the intermediate region
1 - ab < c< | + ab, /3% takes on its lowest negative value at the exterior touching point ¢ = 1 + ab.
For larger values of ¢ the magnitude | /3| decreases and for smaller values | /3 | decreases monotoni-

cally to zero at ¢ = 0. This lowest negative value is

. ~ 21 + ab)
3 - — Ehed W ————— . [y
[m]mm lfl: ]max (4 + dab + b3) . (35)

When ab = b2 = 1/2, |/1* | . = 6/13. which is close to the values in Figs. 3 and 6 for f{¢ and r%..

respectively.
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Also of interest is the slope %c[ at ¢ = 0, where the pulses are concentric and no vorticity genera-

tion is expected.

d 1'.f|( - —2p2 (36)
-0

dc (1 + 621 = g))?¥’

which is nonzero and large. Thus even modest nonconcentricity leads to apgreciable vorticity and mix-
ing. Similar behavior is observed in the two smooth profiles considered as well. Figure 7 compares
£%.. /3¢, and f7% for a = b = 1/v/2 10 demonstrate the similarity of the voriicity generation form fac-
tors regardless of the profile. This relative profile insensitivity arises because <. is an integral quantity,

the total upper half plane circulation.

Returning to our integrated vorticity estimate of Eq. (29) with a maximum rorm factor of 6/13,

and U, = ¢, we have

Rl = 2 ¢, (R, = Ry) In |22] (37)

13

Po

Using Eq. (8) and assuming ¥ = R, — R, gives an estimate for the maximum velocity on the x-axis:

P

Cs. (38)
Po

Under optimum conditions the velocity between the vortex filaments approaches a quarter of the sound
speed in the surrounding fluid. When the expansion is subsonic throughout (where this analysis ought
to be most accurate). ¢, in Eq. (38) should be replaced by the appropriately averaged expansion velocity
U,.

Using Eq. (10a) for the mixing time with y = 0.85, = R, — Ry and . Eq. (37) above gives

6871’50
Po

Po

(39)

(7 ) min =

¢ In

With ¢, = 5 x 10* cm/s, In (p,./py) = 2.5, and S, = 1.0 cm. the fastest mixing time is about 170 us.
This estimated fastest mixing time is within a factor of two of the dimensional estimate. In any particu-
lar system the integral of Eq. (30) can be performed numerically and the resulting form factor substi-

tuted into Eq. (29} for the integrated vorticity.

The sign of i, is negative for the configuration of Fig. 1 where the second pulse is centered to

the left of the original channel. This means that the jet of colder gas across the original channel starts
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on the side opposite to the displaced second pulse and rushes toward the newly heated region. On aver-
age the old channel moves toward the new channel. This average motion does not imply mixing but
the spatial behavior of the flow from the vortex filament pair, as will be seen in the simulations of Sec-
tion V (Fig. 16). effectively bisects the composite hot channel with a cold jet. The result is two smaller
channels above and below the original symmetry plane in which the vortex filaments are now centered.
A third pulse located at y = 0 between the two modified channels will cause each of these smailer
channels to bifurcate again with fluid jets from the top of the upper channels and the bottom of the

channel impinging on the third expanding channel from above and below.

B. Two-Dimensional Distortion (Elliptical Channel)

The above results are readily generalizable to the other symmetry classes, and we. therefore, wiil
not evaluate the form factors in detail as we have done above. To illustrate the effect of smooth distor-
tions of a pulse (envelope) from a circular cross section, we will treat the expansion of an elliptical
pulse. By smooth distortions, we mean in this example that all of the pressure and density contours of

the pulse will be elliptical in shape. For a Bennett profile, we may express this as

P, — P.,
L - )Y+ By ~ v B
R

Plx, vI=P_ + (40)

1

In Eq. ‘40), R§ = a,b,, where a, and b, are the semimajor and semiminor axes of the elliptical

envelope of the pulse. and 8 = a,/b,.

Initially the pressure and density gradients will be approximately parallel. As the channel
expands. the density distribution will retain an elliptical shape while the pressure distribution and the
flow pattern will approach radial symmetry. Consequently the source ierm in Eq. (1) will be nonzero
when integrated over the expansion period . In contrast to the off center beam propagation case. the

largest contribution to the vorticity comes from the flows in the interior of the expanding channel

boundary (r £ R (1)), since the density is relatively uniform outside. Our derivation will assume the
configuration of Fig. 2, where the circle represents the pressure distribution and the ellipse forms the
enveiope of the density distribution. Since we will not account for the noncylindrical shape of the pres-
sure distribution at early times, Eq. (13) provides an adequate description of the flow field for this
model. The problem is two-dimensional, as in the case of the first asymmetry class: so only £, is

nonzero. The divergence of the flow velocity is nonzero, i.e.,

2V
Tovm L
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Because the vorticity generating flows are, therefor: . compressible, the integration of Eq. (1) is simplest
it we use Lagrangian variables from the beginning. The density of a fluid element will vary it.--zrsely
with its volume over time, as determined by Eq. (41). We may express the average reduction v Jen-

sity as the channel expands by the equation?
plr. D =plr, ORF/R ) 142)

where r now varies with time, R (1) is the boundary of the outward flow as in Eq. (13) and Ry = R 1)

Using Eq. (42) and Eq. (13) with r = 0, we find that. to a very good approximation.

a3 9 3
— ( ) = — ( )= —in{p/ — ). )
36 Inptr, ¢ 39 Inp(r, 0 n{p/pyl 26 gtr. 0 (43

As in Section IV.A, we have suppressed the dependence on §; and. in this case X,. to shorten our
notation. Thus the density distribution at very early times dominates the density Jdependence of the

source term. With Eqs. (14 and 41-43), Eq. (1) becomes

df- 2U Pzn 0 U U
== 2 o =+ =) (
dt 6 po | 98 ¢! R:] +)

We may now integrate Eq. (44) over the time interval (0, 7). As in the case of the density. the vorti-
city present in a fluid element at time r < 7 decreases with subsequent expansion by the factor
R*(1)/R*(7). This effect is associated with the nonzero divergence of the velocity and thus accounts

for the second term on the left hand side of Eq. (44).
Our Lagrangian variables are r(r) and 6(s) = ¢ (constant in time), which give the position of a
fluid element at «ime ¢t = . From Eq. (13} we find that r{7) and r{0) = r, are related by

l‘(T)Rr)
R(z) ~

(45)

rg =

When we express the initial density distribution in terms of r(r), the vorticity at time = is the integral

of the source term in Eq. (44) over the time interval (0.7}, reduced by the factor R¥(s)/R () 1o

account for the nonzero divergence of the velocity. This gives us

P=t & 177)R, R (r) [,‘
Ar. 8, )= —ln|—]|—
E.tr T lnp0 aﬁlR() f R()d, R
I p=]a |rORy
o - — ~_( )_
R e lad RiT) fo dt UR) - U (46)
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Foudowing the development of Section A, we note that the term d(UR )/dr integrates to zero, and
we apornximate the remaining portion of the integral in terms of ¢ = ¢,, when the expansion flux

Utr) R':1 reaches a maximum. This gives us

Ulr Pl 8 rir) Ry
=~ - =1 X o| ——= (
£.(r,0,7) = SR 1 36 g R0 47)

Comparing th.s with the results of Sectiorn A, we see that the form of k. will be quite similar in the two

cases.

We may now integrate Eq. (47) over the quarter plane. which contains a single vortex filament. as

shown in Fig. 2. The integral is

Ro 0] (48)

d()fwdrr—g R

where r and R are functions of . We may perform the 9 integral and use Eq. (45) to transform from
r(r) ton = ry/ Ry as an integration variable. If we now include the explicit dependence on X, and S,
we obtain

UZ
2

P

In fita, b ¢) (49)

1
1o
]

L

= U, (R, - Ry In

l/s ta, b, ¢,
where a. b, and ¢ are given by Eq. (27). The torm factor is

Sila. b, ¢) =fn dn niglabn, % c)—glaby, 0, ¢){. (50)

For the initial efTective radius of the flow field, we use R = a,b,. in which a, and b, are the semima-

jor and semiminor axes of the pressure pulse.

We may calculate the form factor f5. for a super-Gaussian density distribution,

-
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Inserting Eq. (51} into Eq. (50). we have

2% S,
R§

Sy, = (52)
For Sy = Ry and X, = 1/2 S, | f».| = 1, and our form factor is a factor of ~ 2 larger than for asym-
metry class one. However, since we did not account for the approximate alignment of the pressure and
density at early times. we might expect !f;:l. as given by Eq. (50). to be too large by a similar factor.

Thus. we would expect a more exact calculation of | f,.] to yield values similar to those of |f.1.

C. Three-Dimensional Distortions

A pulse may also have an axis which is curved or kinked. This curvature may be the result of a
perturbation in the envelope of the pulse. as in the case of a deformable solid, or alternatively, could
occur if the deposition of energy along the axis is nonuniform. Our current treatment assumes the
former case. in which the pulse is deformed smoothly, and we will consequently parallel Section IV.B in
our general approach. Figure 3 shows that we choose the z-axis to coincide with the center of mass of
the pulse. This causes the density to vary as a function of = and 8, and both £, and £, are nonnetigible.

We will discuss each component separately. taking £. first.
C.1 Derivation of ¥;.

The assumptions of Section 1V.B apply directly to the derivation of k.. since the interior flows are
again 12sponsible for the vorticity generation. Figure 3 indicates that the flow is radial from the : axis,
and R,. the radius of the expansion wave. is 2 1X,| S, where X, is the displacement of the channel
axis from the :z-axis. By convention X, will be positive for a displacement of the channe} to the right of
the s-axis. The situation resembles the first asymmetry class, off-center beam propagation, although X,
oscillates between positive and negative values as - changes. As in Section IV.B, we initially suppress

2. Xo. and S, in our argument list for ¢ (s. r}. Carrying over Egs. (41)-(47), we find that

foﬂ de fnm drr b%_ g

in which r and R are functions of . Because of the similarity to asymmetry class one, we see that the

U:r

2R*

Poo

Po

tn
o
-

ky.lor) = In

s[-r—gg-. 0]) (

radial variable s is given by Eq. (20) with X; a tunction =z, and the # integral is given by Eq. (21). We
may now transform our radial integration variable from r(7) to n = ry/R,. as was done in solving Eq.

(48) for asymmetry class two. This gives us
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Si:ta b oo 2) (54)

where the dependence on X,(:! und S, is now explicitly included through the ratios a. b. and ¢, which
are defined in Eq. (27). With ths assumption that g(s, Sp) = g(j/SO)‘ the form factor is

¢’ a

) w )
Sita, b ¢ :)=fo dnmglabn + ¢ ) —fo dnqnglc ~abn, ) (85)

- be dnn glabn = ¢ z).

As an example let us use a Gaussian function for g(s/Sy), Eq. {31). where s is given by Eq. (20)
with

Xo(z) = h cos Qmwz/N) (56)

in the coordinate system defined by Fig. 3. Equation (53) gives us

fr.=— 7 %Z)ﬁ (57)
Note the similarity with our calculation for f,, (Eq. (52)). We also pointed out earlier in this subsec-
tion and in Fig. 3 that, in our model for the flow field, Ry < |.Y,i + S, and, therefore. suggest using
h + 8, as an estimate for R,. If & = §,, then the average magnitude of X, is =2/3 §, and we find
that the average |f;.| is =0.3. As for the elliptical channel case, the pressure will not be symmetric
about the z-axis at early times, and our values for | ;.| may be somewhat high. Note that, by Eq. (56).

most of the vorticity is generated at the ends and center of the channel section.
C.2. Derivation of K3

To solve for the # component of the vortex filament strength. we return to Eq. (1). Following

the line of reasoning which lead 10 Eq. (44), we find that

dé, 2U Px |08 d |U L? -
—_— — = == + = (58)
dr R fom 00 [8: T IR R?

Again the density distribution at early times determines the vorticity through the derivative of
g(s. Sy, 0) in Eq. (58). Proceeding as in subsections 1V.B and C.1. we use Lagrangian variables r (1),

#, and :, and integrate over time first to obtain

. 1 Pe] 8 rizIR, . T d . "
&0 0. 2 0 = o in (2] g (sl ] J ar o R -l s




As in the case of Eq. (22}, we simplify our integral by replacing r (r) with the value of r at a specific
time; here we use r(r), which is the most convenient choice for the spatial integral below. Again we
note that d(UR)/dr integrates 1o zero, and we approximate the remaining portion of the integral in
terms of + = ,,. Thus we obtain

Uir

tr., 8. = )= - > In
fulr R

(r)R
r(.—)i_g's[r.r_ L. :]]. (60)

Po

We now integrate Eq. (60) over the region {re(0, o), z¢(0, A/2)}, which contains vorticity of

one sign. in analogy to the two-dimensional cases. The integral is

% A2 9 r(t)R,
fo drrfo d- Eg[s[ ) . 8, :]]. (61)

U}
2RH7)
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P=
Po

We now perform the - integral and use Eq. (43) to transform r(z) to n = ry/ R, as an integration vari-
able. Including the explicit dependence on X, and S, through the ratios ry/Sy and X/ S, as before. we

have

2
m

3

P

—

Kylr. 8) = — In fla boc 8 (62)

where a. b. and ¢ are defined by Eq. (27) and the form factor is
S la b oc 8) =j:) dnm [g(abn, 8. A2, ¢)—glabm, 6, 0, c)]. 63)

For the initial radius R,, we may again use |Xyl + Sy. If g(s/'Sy) is given by Egs. (20). (31). and (36},

we find that the form factor is

hS
S = —\/;722 cos 8 exp
)

h sinh -

- (=== (64)
So

Equation (64) shows that |3, is maximum on the x-axis (@ = 0. 7). This is analogous to the situa-

tion for £, which is determined primarily by = = 0, A/2. Notice also that the maximum values of a0

and {fy,| agree at z = 0, A/2 and § = 0, =, respectively. as they should because vorticity is divergence

free.

D. Nonuniform Deposition of Energy

In asymmetry classes two and three (sections IV.B and C). we assumed that the pulse was dis-

torted smoothly. similar to changes in shape of a deformable solid. Vorticity generation also takes place
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when energy deposition is nonuniform within the :n-elope of a pulse. The simplest model of this
situation wou'd be that of .V simultaneous small pulscs within the enveloe of the actual pulse and with
the same integrated (total) energy as the actual pulse. o estimate the amount of vorticity generated in
this model, we may extrapolate the results of Section [N A for a pulse which is misaligned relative to a
preformed. hot channel. Each of the .V pulses will produce a hot channel through which the expanding
shock waves produced by the other .V — 1 pulses will pass. Taken separately, each pair of pulses.
labeled by & and /, would produce two pairs of vortex filaments, Eq. (29) gives the approximate

!, Given that .V is a small nun:ber and the pulses are sufficiently close, we

strength of each filament k¥
remember from Section IV.A that the strength k' will vary slowly with the displacement of pulses &
and /. Thus we have |k*| = k (constant). Since there are .N (N — 1)/2 pairs of pulses, we find that
convective mixing of characteristic strength V(V — 1) k occurs when a small number .V of simultane-
ous pulses are deposited close together. When the displacements of the puilses are greater than the
radius of the channel which one of the pulses would produce separately (i.e.. X§ > R, = Ry,). the
form factor in Eq. (29) decreases rapidly with increasing X§. Thus for a large number of pulses or for
pulses which do not overlap, only "nearest neighbors" will interact to p-oduce significant vorticity. The
number .V* of nearest neighbors for each pulse will depend on geometry, and the resultant mixing
strength will be proportional to .V .V*k. We expect that the pulse sizes will determine the minimum
scale of the turbulent structure observed in the composite channel produced by the collection of pulses.
We will present further discussion of this higher order application of the theory and a comparison with

relevant experimental data in a future article.

V. DETAILED NUMERICAL SIMULATIONS

We have performed preliminary detailed numerical simulations of this problem using the
FAST2D>!! computer code in order to validate and calibrate the approximate analytic model developed
above. The FAST2D code solves the two-dimensional equations for convervation of mass. momen-
tum, and energy. employing the techniques of flux-corrected transport (FCT) and time step splitting.
In addition to accounting for shocks properly, which the theoretical model does not do. the simulations
are capable of describing the late-time motions and profiles as modified by the induced vorticity. Thus
the various elements of the mixing-time approximations, and their significance. can be evaluated using
detailed calculations of representative problems. In this section we will discuss simulations of examples
of the two-dimensional asymmetry classes (1 and 2). The case of off center pulse propagation will
receive more attention, since the vorticity strength will usually be greater than for smooth two-
dimensional distortions and because the general features of the two cases are the same. We have
addressed the question of channel ¢ »ling elsewhere®* in the context of convective cocling of lightning

channels. and we will discuss complex multipulse turbulent flows in a future paper.
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A. Off Center Pulse Propagation

Our simulations of off center puise propagation utihize Curtesian coordinates and the configuration
of Fig. 8. which shows a stationary. rectangular gnid. Only the upper half plane appears in the calcula-
tion, since the x-axis forms a symmetry axis. The lower boundary is reflecting while the others are
open. The grid consists of 109 by 30 cells of dimension Ax and 53, each vanving from | mm to 5 mm.
To resolve the channel dvnamics sutficiently. we have embedded 4 finely zoned region of 30 x 20 cells.
each | mm on 4 side. in the center of the gnd. where the axis of 4an initial 1.0 ¢m radius hot chennel
was positioned. With increasing distance from the central dne grid. the values of 8x and 83 transitioned

smoothly from | mm to 3 mm. Near the sides and top of the grid. $x and 81 were both 3 mm.

Figure 9 shows a plot of ptx. 0. 0) and Ptx. 0. 0) talong the v = 0 plane) at the time the second

pulse is deposited. Bennett profiles. 1. (] = 5= $5)°. for the density and pressure deviation from A
ambient were used in these calculations. The dots 1 ®) on the two curves show the location and spacing

1 mm) of the finite difference grid points in the vicinity of the channel center.

To compute the vortex filament strength approximately we integrate the vorticity over the upper

half plane to obtain

Fy = [ ac [ ave v = [ a0 0= ™av,(x 0.0 (65)

mn

where v, and v, are the respective limits of the coordinates on our grid. To derive Eq. (65) we

have assumed that v, v, =~ 0 as x, v — 2.

Figure 10 shows the results of our calculations of k. (¢) for p../py = 16. Ry = 0.4, R, = 1.3 cm.
Sy = 1.0. and X, = 1.0 cm using t1e wensity profile of the channel formed by the first pulse and the
pressure profile of the second pulse as shown in Fig. 9. Throughout the simulations. y = ¢p, oy =
1.35. where ¢p and ¢, are the specific heats for air with constant.pressure and constant volume. respec-
tively. After an initial positive transient and a weak relaxation oscillation, the integrated vorticity set-
tles down to a steady state (negative) value. We mayv compare our formula, Eq. (29), for the vortex -
filament strength with the residual value shown in Fig. 10. If we assume R,, = 1.0 cm.a = 04. b =
1.0. and ¢ = 1.0, then f;, (4. 1.0, 1.0) —~ —0.23 from Fig. 15. Substituting these numbers into Eq.
(29) with U, = ¢, taken as 4 x 10* cm/sec gives k. (r) = —1.9 x 10 ¢cm?/sec. This number is within

10% of the value of ~2.1 x 10* cm*/sec which we obtain from our simulations. The speed of sound c,

should be evaluated using only the density and temperature profiles of the preformed channel at the

location of the center of the second pulse, i.e.. x = —X, = ~] c¢m for the example here. The charac-

teristic time r must be approximately equal to (R} — Ry)/(¢,/2) = 45 us to justify using ¢, as the




P

effective maximum expansion velocity of the heated cvlinder. This value is within 25% of the observed

value of v < 60 us.

Using Eq. 16) with x = 0 and our theoretical value for k,. gives the maximum flow velocity

expected 1n the symmetry plane,

er ™ T IViimax = —l_i =-T6m/s (66)
TV

when " = 0.8 ¢m (from the simulation). This value is in good agreement with the jet velocity of —85

m/s measured in the detailed simulations. The mixing time calculated from Eq. (10} using parameter

values from the simulation is about 360 us.

L - . . . \2 . .
In deriving Eq. 125) from Eq. (22) the time derivative term % which must integrate to zero

) ) ) . ov L .
during the expansion. is neglected in favor of the \‘3— term. which is always of the same sign and
r

hence contributes most to the integral over the interval (0, #). A posteriori justification for this
approximation is obtlained from Fig. 10, which shows both the general cancellation of a big transient
component. as assumed in Section IV, and good quantitative agreement with the residual vorticity term.
This means that the amount of vorticity generated depends strongly on the eventual radial displacement
of each fluid .lement but not on the detailed expansion history. The scale of the vorticity is set by an

average expansion velocity only.

Figure 11 shows a schematic diagram to explain physicallv how the initial positive vorticity spike
of Fig. 10 occurs. The expanding shock. shown at four different times as a dashed line. travels faster
and drives the post shock flow faster in the low density material. We represent the density gradien. as
being localized between the two solid semi-circles in an annulus centered at S;. The shear resulting
from the differential acceleration of the inner and the outer fluid corresponds to vorticity of positive
sign which vanishes. as assumed. when differential velocity ceases. The angle between Vp and VP
(assumed normal to the dashed line shock fronts) appears at three locations along the original channel
periphery. The residual vorticity. which corresponds to that appearing in Eqs. (25) and (28), in effect

measures the net outward expansion of the new channel.

Figures 12 and 13 show the vortictty strength k,.(r) for several values of Y, with the other
remaining variables in our standard case held constant. When the axis of the second pulse fell within
S, of the center of the channel (Fig. 12). the transient term appeared to oscillate more rapidly than the
cases for which the axis of the second pulse fell "outside” the original channel (Fig. 13). The residual

values k.. were also more nearly equal for the cases in Fig. 12 than for those in Fig. 13. The general
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trend of k. (¢ — oo} in the five cases of Figs. 12 and 13 follows qualitatively the shape of f,.fa. b, ¢)
plotted for various cases in Figs. 3. 6. and 7. The uncancelled vorticity, which we called ¥,, in Section
11, decreases from a maximum around .X,, = §; both as X, — G and as X, becomes large compared to
Sy. The ratio of k). at Xy, = 0.2 cm to «,, at .X; = 0.1 cm is probably not as small as expected from
the curves f. in Fig. 6 because the sound speed is higher when the second pulse is nearer the center of
the preformed channel. The increasing sound speed partially counterbalances the tendency of Ji; o fall

off as X, approaches zero.

The major issue in interpreting these calculations using the formulae of Section [II revoives
around the choice of Lnr/2 for Eq. (28). For estimates in the case of off center pulse propagation, w °
have assumed U, is the sound speed of the fluid at the center of the second pulse just before the

second pulse is actually deposited. We have also assumed that the average expansion velocity is /2.

Figure 14 compares the effects of initial pulse size on the second pulse, given constant values of
the channel parameters and the overpressure and displacement, X, of the second puise. We notice
that the transient term appears to scale in magnitude as R, while the value of the "residual” vorticity
appears to scale as R§. We may explain the scaling of the residual vorticity in terms of our analytic

“late time" treatment. Instead of using the estimate

Uy = ¢ (67)
we may calculate U, from the equation
v, = — % (68)

T

where t is the time of expansion fram Ry to R. In Fig. 14, we see that the extrema in «,. for the
cases of Ry = 0.2 cm and 0.4 ¢cm occur at almost the same values of t and that the relaxation to the
final value of k. occurs at the same rate for the two cases. Thus.we have (for any consistent definition

of 7) the relation

T4=Ts (69)
However we expect that
1
Rl:l‘"'?RlB (70)
since
1
Ry, = ‘2‘ Ros. an

1
i
|
!
|




Thus Eq. 168) yields

Upy = -;— Upp. (72)

Estimates of the form factor indicate that

rt= rt. (73)

for the case shown in Fig. 14,

This analysis indicates that ¢, provides only a crude estimate of (), as the energy deposited
becomes small. From Eq. (69) and the fact that only the preformed channel was identical in cases A
and B, we conclude that the refaxation time of the transients depends as much on the already existing
density gradients as it does on the expansion of the new channel. The ambient sound speed at Y, =
1.0 cm is about 4 x 10* cm/sec for the standard case and the reduced energy case of Fig. 14. The final
relaxation to the long-time value «,. begins at about 40 us for both cases. about the time required for a
sound wave to reach the far side of the original hot channel from the edge of the second pulse (a dis-

tance of 1.8 cm and 1.6 cm for cases A and B respectively).

In Table I and Fig. 15, we present estimates of the form factor f). for the case S; = 1.0 cm, R,
= 04cm, R, = 1.4 cm, p./py = 10 (channei formed by first pulse) and P/ P = 31 (second pulse),
as shown in Figs. 8 and 9. These values correspond to @ = 0.4 and b = 1.0. We vary ¢ from 0.2 10
2.0. To estimate the value of U,. we used Eqs. (67) and (68). For Eq. (68). we define r 10 be the
time elapsed between the deposition of the second pulse (+ = 0 in Figs. 13 and 14) and the last
extremum in ¥,. before the monotonic relaxation to the residual value. The solid curve is the estimate
from Eq. (30) using a Bennett dznsity profile, Eq. (32), for the original channel. Near ¢ = 1.0, Eq.
(67) appears to provide a better estimate of (', than does Eq. (68), at least when Ry = 1.0 cm. Better
agreement between the values of f,. derived from simulations and the theory is expected when the

energy deposition is slow and the adiabatic expansion treatment is a better approximation.

Finally, to illustrate the details of the flow resulting from off center ~ ise propagation, we have
performed a simulation of two sequential. noncollinear pulses without the use of a symmetry plane.
The Cartesian grid consists of 100 x 100 cells with 50 x 50 uniform fine cells in the center. The

dimensions of the remaining cells increase geometrically to move the boundaries far away from the hot

26




channel. The first pulse deposits energy in the center at time ¢ = 0.0 while the second occurs | ms

later and deposits energy to the right of center (X, = —0.5 cm). The peak overpressures (P, — P.,)
at the instants when energy deposition occurs are 4.7 atm and 2.4 atm, respectively. Again the pulses
have Bennett profiles. Eq. (32), with a Bennett radius S, = 0.5 cm: thus we have ¢ = 1.0. Figure 16
shows density contours and velocity vectors at + = 1.26 ms and density contours at ¢+ = 2 ms for the
finely gridded central region. The noncollinearity of the pulses has produced an elongated. hot central
core. In addition, the vector velocity plot clearly shows the enhanced flow between the two vortex
filaments, which are separated by 2v = 1.1 ¢m or approximately 2 Bennett radii. This flow pulls the
original hot channel (produced by the first puise} toward the center of the second pulse. as predicted by
our analytic theory. The diagram corresponding to ¢ = 2 ms shows that the center of the original chan-
nel has cooled (has a higher density) as a result of this displacement. We observed identical

phenomena in all similar simulations.

B. Two-Dimensional Distortions

To simulate vorticity generation by smooth two-dimensional distortions. we chose the case of an
elliptical pulse as defined in Fig. 17. The parameters in Fig. 17 are typical of elliptical laser pulses used
in recent studies by Greig et al.'* We note that the pulse is much weaker than those considered in Sub-
section IV A, and thus expect the residual vorticity 1o be [ower in value. We use a constant value of
y = 1.4 for the ratio of principal specific heats. The Cartesian grid is quite similar 1o that used in the
previous case. although more cells (150 x 75) are used. The embedded fine grid consists of 100 x 350
cells. and outside that region the x and v dimensions of the cells increase geometrically. This moves
the boundaries far from the region of interest. permitting the shock to propagate well away from the
hot channel before reaching the boundary. After pressure equilibrium of the hot eiliptical channel is
reached, we numerically elimina.e the radial flows associated with the shock and follow only the
incompressible flows associated with cur mechanism for channel cooling. This permits use of longer

time steps (factor of ~ 100} and reduces the running tume significantly.

Figure 18 shows a sequence of density contour diagrams for this calculation. Defining the time
t = 0 1o coincide with the instantaneous deposition of energy, we see the shock wave moving out of
the fine grid and leaving a hot channel with an elliptical cross section at + = 50 us. The channel
remains approximately the same for + = | ms and begins to distort noticeably by r = 2 ms under the
influence of the flow shown in Fig. 2. This flow pattern continues to pull the channel outward along
the x-axis as the two vortex filament pairs apparently move apart. Because a relatively coarse grid is
used. these calculations do not resolve smalier scale turbulent structure which has been observed exper-

12

imentally.'¢ In addition, perturbations introduced experimentally might alter the interactions among
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vortex filaments and, therefore. the flow patitern shown in our calculations at late times. However, this
simulation should provide a useful treatment of the larger scale flows which determine the rate at which
the ambient atmosphere mixes with the hot channe! gas as a result of smooth two-dimensional distor-

tions of a pulse.

To obtain an estimate for the strength of each vortex ftilameni. of which four are present, we

integrate the vorticity over the upper right quadrant {xe (0, o), ye{0, %)| to obtain
@m-L anuun—ﬁ dv v, (0. v. 1) (75)

:ﬂmunman—ﬂmw“m%”

where Xy, and v, are the positive limits of our grid. In deriving Eq. (75) we have again assumed
that v, v, — 0 and x, v — oo. Figure 19 shows the evolution of x,. for the elliptical channei simula-
tion. As we have indicated in Fig. 2. the residual vorticity in the upper right hand quadrant should be
positive, the flow being inward at the ends of the major axis and outward along the minor axis. During
the expansion to pressure equilibrium. however, the acceleration term dv/a¢ induces a transient nega-
tive vorticity. By our previous definition. 7,,. appears to be <73 us and the residual vorticity is =2.7
x 102 ¢m?/s. Defining R¥(1) = a(1) b(1) where alr) and b(r) are the semimajor and semiminor axes
of the ellipse. we have R, = (.25 cm. Adiabatic expansion would give us R, = 0.36 and p./p;, =2
for the hot channel at pressure equilibrium, and from the simulation, we obtain U, < 3 x 10% cm/s.
which is less than the ambient value of ¢, by an order of magnitude. From Figs. 2 and 17, we find that
Sy = 0.31 and X, = 0.19. From Eq. (52) and the ensuing discussion, we obtain |f,.| = 1. We may
now use Eq. (49) to find an estimate of |k,.| (theory) < 2.3 x 102 cm?¥/s. Theory and simulation,

therefore. agree within a factor of 20%.

V1. CONCLUSIONS

This paper represents a first step in analyzing the cooling of hot channels produced by local energy
deposition in a gaseous medium. We have identified a mechanism which produces sufficient rotational
motion to account for the cooling rates of electric discharge channels produced in the laboratory.'™® As
the channel expands to pressure equilibrium, a shock is produced, and asymmetries between pressure
and density gradients generate vorticity according to Eq. (1). After pressure equilibration and propaga-
tion of the shock wave well away from the hot channel, vorticity is no longer generated: however.
significant residual vorticity exists. We may represent the resulting flow field in terms of one or more

vortex filament pairs of strength + & ,,. where i = 1, 2. 3 labels the type of asymmetry and a = zor 8,

labels the vector component of the vorticity. The strength «,, satisfies the equation
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Jia (76)

where U, is the expansion velocity of the channel boundary when the expansion flux U(¢) R(1) is a
maximum. p, and pg are the ambient density and the density at the center of the hot channel just after
energy deposition; and f,, is a form factor which may be evaluated from the formulae presented in Sec-
tion IV. For asymmetry class 1 (off center pulse propagation), U, = ¢, since the flows a1 the channel
boundary generate most of the vorticity. For smooth distortions of the pulse envelope, which belong to
asymmetry classes 2 and 3, U, < ¢,, since the subsonic interior flows generate most of the residual
vorticity. We have also identified another subclass of pulse distortions which arise from energy deposi-
tion twithin the envelope of a pulse) which does not follow a smooth functional form such as the Ben-
nett profile of Eq. (40). As a simple model we might consider deposition to occur as several simultane-
ous packets of energy within the boundary of the pulse. In a future paper we will analyze and simulate
this situation in detail using the FAST2D code. Accurate numerical simulations of examples of the

two-dimensional asymmetry classes have revealed good agreement with Eq. (76).

With an estimate for ¥, which appears from simulations to be =5, and Eq. (76) for k,,. we may
obtain values for the mixing time scales r.,, from Egs. (10a-e). For the two-dimensional asymmetry
classes 7, 1S the approximate time for doubling of the volume. For three-dimensional distortions, «,
and «;. are both nonnegligible, and the cumulative effects of the two components must be calculated to
obtain a reasonable doubling time for the channel volume. The values of =) and 7 given by
Egs. (10a) and (10e) do. however, provide a usefui estimate of the importance of each component rela-

tive to the other and to other types of asymmetry.
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Table | — Values of 7, from numerical simulations The displacement of the axes of the hot channel
and the latest pulse o = v, 5,0 varies from 0.2-2.0. The table also compares two methods of computing
t.. The sound speed . is computed at the position of the pulse just prior to energy deposition.

c Um = C4iXy) |-F,,(Cy) Un leq.68) | -f, (eq.68) -k, )
0.2 | 8.2x10%m | 0.10 /8.0 x10%m| 0.10 |1.9 x 10%m?
secC sec secC
0.5 || 5.2 x 10? 0.18 || 6.3 x 10% 0.14 |2.1 x10°
1.0 || 3.9 x 10% 0.23 |} 5.9 x 104 0.15 |2.1 x 104
1.5 || 3.6 x 104 0.19 | 4.2 x 104 0.17 [1.6 x 104
2.0 || 3.5 x 104 0.15 || 3.2 x 104 0.16 [1.2 x 10°
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Fig. 1 = Schemauc of asymmetry class one. 'n which a evlindrical pulse of radius R. propagates parallef to a hot channei of
characteristic radius S, formed by a previous pulse. The second pulse. offset f'rom the first puise by V. 2xpands 1o radius R,




Frg 2 = The second ssvmmetry class includes pulses with smooth, two-dimensional deviations from g circular cross section
This schematic shows the upper hait ol the flow feld produced by 4 pulse with elliptical energy contours.  After deposition. the
aressure distribution and veiocity field approach cvlindrical ssmmetry whyle the deasity distribution remains ethpticai. We model
this anaiytically by assuming a avhindreal expansion from radws R, o R, @0 the presence of an elliptical density distrnibution
characterized by 2 radius S, the asymmetry parameter V. a4 density pyy 4t the center. and an ambent density o, The cunved

arrows indicate the direction ot residual rotational flows corresponding to the two vortex filament pairs of strength =<, pro-
Juved by the asymmetry

33




— N ——

_"xoi S,

Fig. 3 = We model assmmetry class three by treating 2 sinusoidal chunnel section of waveiength « This will generate nonncgi-
gible - and # components of the vorteity - The flow ficld approaches cvlindrical symmetry about the center of mass (2-anis) whie
the deasity disiribuion 18 offset from the z-axis by V. which varies with posiien ajong the -avis.
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Fig. 8 — Imual condiuons for numencal simulatons of vorucity generation when a puise propagates paraliel 1o but offset from an
2xiting hot channel. The simulations include oniy the upper halt ptane with 4 reflecung lower boundary and outtlow condittons
at the other boundaries. By stretching the outermost zones by a factor of five, we move the houndaries tar from the active re-

s a2 A B A M S8 2471 0

t Prax = 31 RS :

_ second
. pulse

@t i b+ e 2R A~ A~ A B AR i e i1

13 |4 15 16 |7

Fig 9 — Pressure and density profiles along the symmetry {x-2) plane when the axes of the hot channel and the latest puise are
separated by 10 ¢em  The charactenstic radwss of the channel 1s 1.0 ¢cm and that of the latest pulse s 04 cm tFigs T and 8) The
Jdata points correspond to cell centers and indwate the resolution provided by the tine zones.
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Fig. 16 — 1a) Density contours and (b) velocity sectors at 4 time 7 = | 26 ms and (¢} density contours 4t ¢ = 200 ms Jor 1wo
sequential noncollinear pulses. The first puise occurred at ¢ = 0 ms i the venter of the erid. and the sevond pulse occurred at
r = 10 ms with a displacement of 0.3 ¢ 10 the freader’s) night of center  The Hgures correspond to the iine grid. The densiy
contours vary from 34 x 107 Ginnermost! to 1.1 x 10~ gm/em? toutermost). In (h). we have plotted & velocity vector at
every other el center: thus the centers of the two vortex filaments are somewhat indistinet. The major tlow occurs between the
tilaments and the direction of the low is from the conter of the carlier pulse to the center of the later pulse.
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Fig. 16 — ta) Density contours and (b) velocity vectors at 4 time ¢ = 1.26 ms and {¢) density contours at 1 = .00 ms fur two !
sequential noncollinear puises. The first pulse occurred at ¢+ = 0.0 ms in the center of the grid. and the second pulse occurred at ;
|

r = 1.0 ms with 4 displacement of 0 3 ¢m to the (reader’s) right ot center. The figures correspond to the fine grid. The density )
contours vary from 30 x 10~ (innermost) 10 1 1 x 1077 gmyem® toutermost)  In (b). we have plotted a4 veloanty vector at '
every other cell center: thus the centers of the two vortex filaments are somewhat indistinct. The maior flow occurs between the
lilaments and the direction of the flow is from the center of the carlier pulse to the center of the later pulse. |
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Fig 16 = ta) Density contours and (h) velocity vectors at @ time £ = 1.26 ms and ‘¢! density contours at 1 = 200 my for wo

seuuentai noncoilinear puises. The first puise occurred at ¢ = 0.0 ms in the center of the grid. and the second pulse occurred ai

r = | % ms with a4 displacement of .5 cm to the 'reader’s) right of center. The tigures correspond to the fine grid  The density ;
contours vary from 30 x 1073 Ganermost) to 11 x 10~ gm/em? foutermostt  In (b). we have plotted a velocity vector at

! every ather cell center: thus the centers of the two vortex filaments are somewhat indistinct. The major tllow oceurs hetween the

filaments and the direction of the flow is from the center of the carlier pulse to the center of the later pulse.
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Fig 17 = This schematic shows the el condittons and Cuartesian grid for our numencal simulation of vorucity generation b
an elhpueal pulse. We simulate only the poruon of the pulse above tne vz symmetry plane. surrounding the pulse with a uni-
torm grnd of 100 x 30 fine cells. The dimensions of the remaining cells then increase geometrically with distance trom the pulse
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Fig. 18 — Results of 4 computer simulation of the time Jevelopment of 4 laser pulse having smooth ellipucal distortion.
The simulation used the inittal conditions described in Fig. 17. The density contour diagrams shown here correspond to the
tollowing ime ntervals elapsed from the pont of instantancous energy deposition. () 3o us. th) 75 ps (0} 20 ms. 1d) 4.0
ms. and fe) 6.4 ms. The six equally spaced contour values range from 7.4 x 107* g/em® (comour 10 to 1.26 x 1077 g cm?®
tcontour 6); the contour values increase with ncreasing vertical displacement from the center of the channel. In (a). the
shock appears just inside the fine grd  Duagram (b} shows contours 1-5 and the uthers have only contours 2-3. indivating
that the channel gas has cooled somewhat. The Nattened tops of the contours result from clipping by the fluv-corrected
transport algonthm
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Fig. 18 = Results ol a computer simulaton of the ume development of 1 laser pulse having smooth elhptical distort:on
The simulation used the intial conditons described in Fig. 17, The density contour diagrams shown here correspond to the
followmy ume mntervais elapsed from the point of instuntaneous energy deposition. (a) 36 us. thr "5 us. ) 20 ms, td) 40
ms. and 'e) 64 ms. The six equalls spaced contour vues range from 73 x 1074 giem?® (contour 1110 1.26 x 107 g em?
teontour 61, the contour salues ncrease with increasing vertical displacement from the center of the channel In i, the
shock gappears just inside the fine grid  Diagram thi shows contours [-3 and the others have only contours 2-5. indicatng
that the channel gus has vooled somewhat. The flattened tops of the contours result from Cipping 2 the Hux-corrected
transport aigorithm.

Fig. 18 — Results of a computer simulation of the ume dervelopment of 4 luser ouise having smooth 2iliptical distortion
The simulation used the inmittal conditions described in Fig 17 The density contour dragrams shown here correspond to the
following time intervals efapsed from the point of instantancous energy deposition tad 36 us. 'hY "8 s tor 20 ms, 1) 40
ms. and (¢) 6.3 ms. The six equally spaced contour values range from ™4 % 1074 g om’ reentour 1110 126 < 1077 g em?
(contour &1: the contour values increase with increasing vertical displacement from tn - center i the channer Intar. the
shock appears just inside the fine grid. Diagram (b7 shows contours 1-% and the others bave can vontours 2-5sndaung
that the channel gas has cooled somewhat. The tlattened tops of the contours result Trom chipping »y the Qunecorrected
transport algorithm.
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Fieg I8 — Rosults of a computer simulation of the time development of a lasar pulse having smooth ellipucal distoraon
The simulation used the imital conditions described in Fig. 17 The density contour diagrams shown here correspond to the
Toilow:ng tme ntersais elipsed from the point of instantaneous energy depostion: ta) 36 us. (b "3 s (¢ 20 my. (d) 40
Ms. and &) 64 ms  The six oguaily spaced contour values range from =4 x 107% g/em® (contour 1) to 126 x 1077 g om”
tcontour o), the contour \alues increase with increasing yvertical displacement from the center of the channel. In ta). the
shock appears just inside the fne grid. Diwagram 1b) shows contours 1-3 and the others have oniy contours 2-5. indicaung
that the channei gas has <ooled somewhat. The fluttened twops of the contours result from clippng by the flun-correcied
transport aigorithm
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Fig. 18 — Results of a computer simulation of the time development of 4 laser pulse having smoath cilipticat distortion
The simulation used the imial conditions described in Fig. 17 The density contour diagrams shown here correspond to the
following time intervals clapsed from the poaint of instantancous enerey deposiion fad 36 ps, thy "Xy o) 20 ms. tdr 40
ms. and fe) 5.4 ms. The six equally spaced contour values range from =34 x 1074 g cm” (contour 1) 10 1 260 x 1077 g om’
tcontour 6). the contuur vaiues increase with increasing sertical displacement from the center of the channel In tar. the
shock appears just inside the tine grid. Diagram (b shows contours }-3 and the others hase only contours 225 mdicanng
that the channel gas has cooled somewhat. The flattened tops of the contours result from chipping by the flun-corrected
transport algonthm.
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Fig {9 = The integrated vorticity K. for the elliptical pulse simulation varies as shown here. with
the anticipated transient behavior and a residual positive vaiue
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